Приложение к АООП ООО

Муниципальное бюджетное общеобразовательное учреждение города Иркутска средняя общеобразовательная школа №6

«СОГЛАСОВАНО»

Заместитель директора по УВР

№6

Л.Ю. Малютина

подпись/расшифровка подписи

УТВЕРЖДАЮ:

Директор МБОУ г. Иркутска СОШ

БОУ

__/Рябчевская М.А.

риказ № 327-10-5

от «<u>3/</u>» <u>09</u> 2023г.

Рабочая программа

по адаптированному учебному курсу физика (вариант 👊)

Для 7-го класса

Количество часов в год	68 ч
Количество часов в неделю	2 ч

Программа: Физика. 7-9 классы: рабочая программа к линии УМК А. В. Перышкина, Е. М. Гутник: учебнометодическое пособие / Н. В. Филонович, Е. М. Гутник. – М.: Дрофа, 2017 учебного пособия для общеобразовательных организаций Физика. 7 кл.: учебник / А. В. Перышкин. – 7-е изд., стереотип. – М.: Дрофа, 2019

Составители:

Е.З. Матвеева, Е.В. Мохова, учителя физики

Содержание

1. Пояснительная записка

Рабочая программа конкретизирует содержание предметных тем, дает распределение учебных часов по разделам курса и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся, определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых обучающимися. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от обучающихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики. Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку В современной жизни. Практическая направленность в преподавании физики и создание условий наилучшего физической обучающимися сущности изучаемого достигается через применение физического эксперимента. Перечень демонстраций и лабораторных работ по каждому разделу указан в рабочей программе. Кроме того, рабочей программой предусмотрено включение экспериментальных заданий, которые направлены на формирование практических умений: наблюдения, планировать, выполнять простейшие эксперименты, измерять физические величины, делать выводы на основе экспериментальных данных.

Примерная рабочая программа по физике для обучающихся с задержкой психического развития (далее – ЗПР) на уровне основного общего образования подготовлена на основе Федерального государственного образовательного стандарта основного общего образования (Приказ Минпросвещения России от 31.05.2021 г. № 287, зарегистрирован Министерством юстиции Российской Федерации 05.07.2021 г., рег. номер 64101) (далее – ФГОС ООО), Примерной адаптированной основной образовательной программы основного общего образования обучающихся с задержкой психического развития (одобренной решением ФУМО по общему образованию (протокол от 18 марта 2022 г. № 1/22)) (далее – ПАООП ООО ЗПР), Примерной рабочей программы основного общего образования по предмету «Физика», Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, общеобразовательные основные программы, программы воспитания, с учетом распределенных по классам проверяемых требований к результатам освоения Адаптированной основной образовательной общего образования обучающихся с задержкой программы основного психического развития.

Цели и задачи изучения учебного предмета «Физика»

Общие цели изучения учебного предмета «Физика» представлены в Примерной рабочей программе основного общего образования.

Основной целью обучения детей с задержкой психического развития на данном предмете является: повышение социальной адаптации детей через применение физических знаний на практике.

Для обучающихся с ЗПР, так же, как и для нормативно развивающихся сверстников, осваивающих основную образовательную программу, доминирующее значение приобретают такие *цели*, как:

- освоение знаний о методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и
- процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний, при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- использование полученных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды. Достижение этих целей обеспечивается решением следующих задач:
- знакомство обучающихся с ЗПР с методами исследования объектов и явлений природы;
- приобретение знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение такими понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

• понимание отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

2. Общая характеристика учебного предмета «Физика»

Учебный предмет «Физика» является системообразующим для естественнонаучных предметов, поскольку физические законы мироздания являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает обучающихся научным методом познания, позволяющим получать объективные знания об окружающем мире.

Предмет максимально направлен на формирование интереса к природному и социальному миру, совершенствование познавательной деятельности обучающихся с ЗПР за счет овладения мыслительными операциями сравнения, обобщения, развитие способности аргументировать свое мнение, формирование возможностей совместной деятельности.

Изучение физики способствует развитию у обучающихся с ЗПР пространственного воображения, функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах. Значимость предмета для развития жизненной компетенции обучающихся заключается в усвоении основы физических знаний, необходимых для повседневной жизни; навыков здорового и безопасного для человека и окружающей его среды образа жизни; формировании экологической культуры.

Программа отражает содержание обучения предмету «Физика» с учетом особых образовательных потребностей обучающихся с ЗПР. Овладение данным учебным предметом представляет определенную трудность для обучающихся с ЗПР. Это связано с особенностями мыслительной деятельности, периодическими колебаниями внимания, малым объемом памяти, недостаточностью общего запаса знаний, пониженным познавательным интересом и низким уровнем речевого развития.

Для преодоления трудностей в изучении учебного предмета «Физика» необходима адаптация объема и характера учебного материала к познавательным возможностям данной категории обучающихся, учет их особенностей развития: использование алгоритмов, внутрипредметных и межпредметных связей, постепенное усложнение изучаемого материала.

Данная программа конкретизирует содержание предметных тем соответствии с требованиями образовательного стандарта, рекомендуемую последовательность изучения разделов физики с учетом межпредметных и связей, учебного внутрипредметных логики процесса, возрастных психологических особенностей обучающихся с ЗПР на уровне основного общего минимальный набор опытов, демонстраций, определяет проводимых учителем лабораторных В классе, работ, выполняемых обучающимися.

Методической основой изучения курса «Физика» на уровне основного

общего образования является системно-деятельностный подход, обеспечивающий достижение личностных, метапредметных и предметных образовательных результатов посредством организации активной познавательной деятельности обучающихся, что очень важно при обучениидетей с ЗПР, для которых характерно снижение познавательной активности.

Основой обучения обучающихся с ЗПР на предметах естественнонаучного цикла является развитие у них основных мыслительных операций (анализ, синтез, сравнение, обобщение) на основе выполнения развивающих упражнений, формирование приемов умственной работы: анализ исходных планирование материала, осуществление поэтапного и итогового самоконтроля, а также осуществляется ликвидация пробелов в знаниях, закрепление изученного материала, отработка алгоритмов, повторение пройденного. Большое значение придается умению рассказать о выполненной работе с употреблением соответствующей терминологии и соблюдением логических связей в излагаемом материале. Для обучающихся ЗПР на уровне основного общего образования по-прежнему являются характерными: недостаточный уровень развития отдельных психических процессов (восприятия, внимания, памяти, мышления), сниженный уровень интеллектуального развития, низкий уровень выполнения учебных заданий, низкая успешность обучения. Поэтому при изучении физики требуется целенаправленное интеллектуальное развитие обучающихся с ЗПР, отвечающее их особенностям и возможностям. Учет особенностей обучающихся с ЗПР требует, чтобы при изучении нового материала обязательно происходило многократное его повторение; расширенное рассмотрение тем и вопросов, раскрывающих связь физики с жизнью; актуализация первичного жизненного опыта обучающихся.

Усвоение программного материала по физике вызывает большие затруднения у обучающихся с ЗПР, поэтому теория изучается без выводов сложных формул. Задачи, требующие применения сложных математических вычислений и формул, в особенности таких тем, как «Механическое движение», «Архимедова сила», «Механическая энергия», «Электрические явления», «Электромагнитные явления», решаются в классе с помощью учителя.

Особое внимание при изучении курса физики уделяется постановке и организации эксперимента, а также проведению (преимущественно на каждом кратковременных демонстраций (возможно c использованием электронной демонстрации). Некоторые темы обязательно должны включать опорные лабораторные работы, которые развивают умение пользоваться простейшими приборами, анализировать полученные данные. В связи с обучающихся поведения И деятельности (расторможенность, неорганизованность) предусмотрен строжайший контроль за соблюдением правил техники безопасности при проведении лабораторных и практических работ.

Большое внимание при изучении физики подростками с ЗПР обращается на овладение ими практическими умениями и навыками. Предусматривается уменьшение объема теоретических сведений, включение отдельных тем или

целых разделов в материалы для обзорного, ознакомительного или факультативного изучения. Предлагается уменьшение объема математических вычислений за счет увеличения качественного описания явлений и процессов

Достаточное количество времени отводится на рассмотрение тем и вопросов, раскрывающих связь физики с жизнью, с теми явлениями, наблюдениями, которые хорошо известны ученикам из их жизненного опыта.

Максимально используются межпредметные связи с такими дисциплинами, как география, химия, биология, т.к. обучающиеся с ЗПР особенно нуждаются в преподнесении одного и того же учебного материала в различных аспектах, в его варьировании, в неоднократном повторении и закреплении полученных знаний и практических умений. Позволяя рассматривать один и тот же учебный материал с разных точек зрения, межпредметные связи способствуют его лучшему осмыслению, более прочному закреплению полученных знаний и практических умений.

3. Место учебного предмета «Физика» в учебном плане

В соответствии с Федеральным государственным образовательным стандартом основного общего образования учебный предмет «Физика» входит в предметную область «Естественные науки» и является обязательным для изучения. Содержание учебного предмета «Физика», представленное в Примерной рабочей программе, соответствует ФГОС ООО, Примерной основной образовательной программе основного общего образования, Примерной адаптированной основной образовательной программе основного общего образования обучающихся с задержкой психического развития. Учебным планом в 7 классе отводится 2 часа в неделю или 68 часов в год.

4. Описание ценностных ориентиров содержания учебного предмета

Усвоение обучающимися смысла основных понятий и законов физики, взаимосвязи между ними; формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира; систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации; формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения; организация экологического мышления и ценностного отношения к природе; развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний.

5. Планируемые результаты освоения учебного предмета «Физика» на уровне ООО

В целом результаты освоения обучающимися с ЗПР учебного предмета «Физика» должны совпадать с результатами примерной рабочей программы основного общего образования Наиболее значимыми являются:

Личностные результаты:

мотивация к обучению и целенаправленной познавательной деятельности; установка на осмысление личного опыта, наблюдений за физическими экспериментами;

установка на осмысление результатов наблюдений за природными и техногенными явлениями с позиций физических законов;

способность оценивать происходящие изменения и их последствия; формулировать и оценивать риски, формировать опыт;

повышение уровня своей компетентности через практическую деятельность (при совместном выполнении лабораторных практических работ);

умение различать учебные ситуации, в которых учащийся с ЗПР может действовать самостоятельно, и ситуации, где следует воспользоваться справочной информацией и другими вспомогательными средствами;

способность принимать решение в жизненной ситуации на основепереноса полученных в ходе обучения физических знаний в актуальную ситуацию;

способность соблюдать в повседневной жизни правила личной безопасности на основе понимания физических явлений и знания законов физики;

умение критически оценивать полученную от собеседника информацию, соотнося ее со знанием физических законов;

способность передать свои соображения, умозаключения так, чтобы быть понятым другим человеком;

адекватность поведения обучающегося с точки зрения опасности или безопасности для себя или для окружающих;

уважение к труду и результатам трудовой деятельности;

углубление представлений о целостной картине мира на основе приобретенных новых естественнонаучных знаний и практических умений.

Метапредметные результаты

Овладение универсальными учебными познавательными действиями:

выявлять причины и следствия простых физических явлений;

определять физические понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, используя справочную информацию и опираясь на алгоритм учебных действий;

устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы под руководством педагога;

искать или отбирать информацию или данные из источников с учетом предложенной учебной задачи и заданных критериев.

создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

с помощью педагога или самостоятельно проводить опыт, несложный эксперимент по установлению особенностей физического объекта или явления; преобразовывать информацию из одного вида в другой (таблицу в текст и

пр.);

устанавливать взаимосвязь физических явлений и процессов, используя алгоритм учебных действий.

Овладение универсальными учебными коммуникативными действиями:

осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих мыслей и потребностей для планирования своей деятельности;

организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.).

целенаправленно использовать информационно-коммуникативные технологии, необходимые для решения учебных и практических физических задач;

организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками в процессе занятий физикой.

Овладение универсальными учебными регулятивными действиями:

понимать цели естественнонаучного обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности;

обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;

самостоятельно или с помощью учителя планировать пути достижения целей в физических экспериментах, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач:

соотносить свои практические действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

правильность выполнения экспериментальной учебной задачи, собственные возможности ее решения;

владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

давать адекватную оценку ситуации и предлагать план ее изменения;

предвидеть трудности, которые могут возникнуть при решении учебной задачи;

осознавать невозможность контролировать все вокруг.

Предметные результаты

Требования к предметным результатам освоения учебного предмета «Физика» в 7 классе

Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- ориентироваться в понятиях и оперировать ими на базовом уровне: физические и химические явления; наблюдение, эксперимент, модель, гипотеза; единицы физических величин; атом, молекула, агрегатные состояния вещества (твёрдое, жидкое, газообразное); механическое движение (равномерное, неравномерное, прямолинейное), траектория, равнодействующая сил, деформация (упругая, пластическая), невесомость, сообщающиеся сосуды, с опорой на дидактический материал
- различать явления (диффузия; тепловое движение частиц вещества; движение; равномерное неравномерное движение; инерция; взаимодействие тел; равновесие твёрдых тел с закреплённой осью вращения; передача давления твёрдыми телами, жидкостями и газами; атмосферное давление; плавание тел; превращения механической энергии) описанию характерных свойств ИХ И на демонстрирующих данное физическое явление, после предварительного обсуждения с педагогом;
- распознавать проявление изученных физических явлений в окружающем мире, в том числе физические явления в природе: примеры движения с различными скоростями в живой и неживой природе; действие силы трения в природе и технике; влияние атмосферного давления на живой организм; плавание рыб; рычаги в теле человека; при этом переводить практическую задачу в учебную, выделять существенные свойства/признаки физических явлений с помощью педагога;
- описывать изученные свойства тел и физические явления, используя физические величины (масса, объём, плотность вещества, время, путь, скорость, средняя скорость, сила упругости, сила тяжести, вес тела, сила трения, давление (твёрдого тела, жидкости, газа), выталкивающая сила, механическая работа, мощность, плечо силы, момент силы, коэффициент полезного действия механизмов, кинетическая и потенциальная энергия) с опорой на схему; при описании раскрывать физический смысл используемых величин, их обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин с опорой на дидактический материал;
- характеризовать свойства тел, физические явления и процессы, используя правила сложения сил (вдоль одной прямой), закон Гука, закон Паскаля, закон Архимеда, правило равновесия рычага (блока), «золотое правило» механики, закон сохранения механической энергии; при этом давать словесную формулировку закона и записывать его математическое выражение под руководством педагога с обсуждением плана работы;
- объяснять физические явления, процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: при помощи педагога выявлять причинно-следственные связи, строить объяснение из 1—2 логических шагов с опорой на 1—2 изученных свойства физических явлений, физических закона или закономерности;

- решать типовые расчётные задачи в 1действие с опорой на алгоритм, предварительно разобранный совместно с педагогом, используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, подставлять физические величины в формулы и проводить расчёты, находить справочные данные, необходимые для решения задач, оценивать реалистичность полученной физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов после предварительного обсуждения с педагогом; при помощи педагога в описании исследования выделять проверяемое предположение (гипотезу), с опорой на дидактический материал различать и интерпретировать полученный результат, находить после обсуждения с педагогом ошибки в ходе опыта, делать выводы по его результатам;
- уметь находить с использованием цифровых образовательных ресурсов опыты по наблюдению физических явлений или физических свойств тел: формулировать проверяемые предположения, собирать установку из предложенного оборудования с опорой на схему, записывать ход опытаи формулировать выводы под руководством педагога;
- выполнять прямые измерения расстояния, времени, массы тела, объёма, силы и температуры с использованием аналоговых и цифровых приборов с опорой на алгоритм; записывать показания приборов с учётом заданной абсолютной погрешности измерений;
- проводить совместно с педагогом исследование зависимости одной физической величины от другой с использованием прямых измерений (зависимости пути равномерно движущегося тела от времени движения тела; силы трения скольжения от веса тела, качества обработки поверхностей тел и независимости силы трения от площади соприкосновения тел; силы упругости от удлинения пружины;
 - выталкивающей силы от объёма погружённой части тела и от плотности жидкости, её независимости от плотности тела, от глубины, на которую погружено тело; условий плавания тел, условий равновесия рычага и блоков); под руководством педагога участвовать в планировании учебного исследования, собирать установку и выполнять измерения, следуя предложенному плану, фиксировать результаты полученной зависимости физических величин в виде предложенных таблиц и графиков, делать выводы по результатам исследования;
- соотносить косвенные измерения физических величин (плотность вещества жидкости и твёрдого тела; сила трения скольжения; давление воздуха; выталкивающая сила, действующая на погружённое в жидкость тело; коэффициент полезного действия простых механизмов), следуя предложенной инструкции; при выполнении измерений под руководством педагога собирать экспериментальную установку и вычислять значение искомой величины;
- соблюдать правила техники безопасности при работе с лабораторным

- оборудованием после предварительного обсуждения с педагогом;
- сопоставлять принципы действия приборов и технических устройств: весы, термометр, динамометр, сообщающиеся сосуды, барометр, рычаг, подвижный и неподвижный блок, наклонная плоскость с опорой на дидактический материал;
- характеризовать принципы действия изученных приборов и технических устройств после предварительного обсуждения с педагогом с опорой на их описания (в том числе: подшипники, устройство водопровода, гидравлический пресс, манометр, высотомер, поршневой насос, ареометр), используя знания о свойствах физических явлений и необходимые физические законы и закономерности;
- приводить примеры / находить информацию о примерах практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять с помощью педагога отбор источников информации в сети Интернет в соответствии с заданным поисковым запросом, на основе имеющихся знаний и путём сравнения различных источников выделять информацию, которая является противоречивой или может быть недостоверной;
- использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать под руководством педагога с обсуждением плана работы краткие письменные и устные сообщения на основе 2—3 источников информации физического содержания, в том числе публично делать краткие сообщения о результатах проектов или учебных исследований; при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;
- при выполнении учебных проектов и исследований под руководством обязанности распределять В группе В соответствии поставленными задачами, следить за выполнением плана действий, адекватно оценивать собственный вклад в деятельность группы; выстраивать коммуникативное взаимодействие, учитывая мнение окружающих.
 - сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять с помощью педагога поиск информации физического содержания в сети Интернет, на основе имеющихся знаний и путём сравнения дополнительных источников выделять информацию, которая является противоречивой или может быть недостоверной;
- использовать при выполнении учебных заданий отобранную педагогом

научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую с опорой на алгоритм и уточняющие вопросы педагога;

- создавать под руководством педагога с обсуждением плана работы письменные и краткие устные сообщения, обобщая информацию из нескольких источников физического содержания, в том числе публично представлять результаты проектной или исследовательской деятельности; при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;
- при выполнении учебных проектов и исследований физических процессов под руководством педагога распределять обязанности в группе в соответствии с поставленными задачами, следить за выполнением плана действий и корректировать его, адекватно оценивать собственный вклад в деятельность группы; выстраивать коммуникативное взаимодействие, проявляя готовность разрешать конфликты.

Содержание учебного предмета «Физика». 7 класс

Раздел 1. Физика и её роль в познании окружающего мира

Физика — наука о природе. Явления природы (MC^1) . Физические явления: механические, тепловые, электрические, магнитные, световые, звуковые.

Физические величины. Измерение физических величин. *Физические приборы*². *Погрешность измерений*. Международная система единиц.

Как физика и другие естественные науки изучают природу. Естественнонаучный метод познания: наблюдение, постановка научного вопроса, выдвижение гипотез, эксперимент по проверке гипотез, объяснение наблюдаемого явления. Описание физических явлений с помощью моделей.

Предмет и методы физики.

Демонстрации

- 1. Механические, тепловые, электрические, магнитные, световые явления.
- 2. Физические приборы и процедура прямых измерений аналоговым и цифровым прибором.
 - 3. Определение погрешности эксперимента.

Фронтальные лабораторные работы или электронная демонстрация.

- 1.Определение цены деления измерительного прибора (используя технологическую карту эксперимента).
 - 2. Измерение объёма жидкости и твёрдого тела
 - 3. Определение размеров малых тел.

Движение частиц вещества. Связь скорости движения частиц с температурой. Броуновское движение, диффузия. *Взаимодействие частиц вещества: притяжение и отталкивание.*

Агрегатные состояния вещества: строение газов, жидкостей и твёрдых (кристаллических) тел. Взаимосвязь между свойствами веществ в разных агрегатных состояниях и их атомно-молекулярным строением. Особенности агрегатных состояний воды.

Демонстрации

- 1. Наблюдение броуновского движения.
- 2. Наблюдение диффузии.

Фронтальные лабораторные работы и опыты

- 1. Оценка диаметра атома методом рядов (с использованием фотографий).
 - 2. Опыты по наблюдению теплового расширения газов.
- 3.Опыты по обнаружению действия сил молекулярного притяжения *(электронная демонстрация)*.

Раздел 3. Движение и взаимодействие тел

Механическое движение. Равномерное и неравномерное движение. Скорость. *Средняя скорость при неравномерном движении*. Расчёт пути и времени движения.

Явление инерции. Закон инерции. Взаимодействие тел как причина изменения скорости движения тел. Масса как мера инертности тела. Плотность вещества. Связь плотности с количеством молекул в единице объёма вещества.

Сила как характеристика взаимодействия тел. Сила упругости и закон Гука. Измерение силы с помощью динамометра. Явление тяготения и сила тяжести. Сила тяжести на других планетах (МС). Вес тела. Невесомость. Сложение сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения и трение покоя. Трение в природе и технике (МС).

Демонстрации

- 1. Наблюдение механического движения тела.
- 2. Измерение скорости прямолинейного движения.
- 3. Наблюдение явления инерции.
- 4. Наблюдение изменения скорости при взаимодействии тел.
- 5. Сравнение масс по взаимодействию тел.
- 6. Сложение сил, направленных по одной прямой.
- 7. Демонстрация силы упругости на различных материалах.

Фронтальные лабораторные работы и опыты.

- 1. Определение скорости равномерного движения (шарика в жидкости, модели электрического автомобиля и т. п.) (электронная демонстрация).
- 2. Определение средней скорости скольжения бруска или шарика по наклонной плоскости.

- 3. Определение плотности твёрдого тела.
- 4. Опыты, демонстрирующие зависимость растяжения (деформации) пружины от приложенной силы.
- 5. Опыты, демонстрирующие зависимость силы трения скольжения от веса тела и характера соприкасающихся поверхностей.

Раздел 4. Давление твёрдых тел, жидкостей и газов

Давление. Способы уменьшения и увеличения давления. Давление газа. Зависимость давления газа от объёма, температуры. Передача давления твёрдыми телами, жидкостями и газами. Закон Паскаля. Пневматические машины. Зависимость давления жидкости от глубины. Сообщающиеся сосуды. Гидравлические механизмы.

Атмосфера Земли и атмосферное давление. *Причины существования* воздушной оболочки Земли. Опыт Торричелли. Измерение атмосферного давления. Зависимость атмосферного давления от высоты над уровнем моря. *Приборы для измерения атмосферного давления*.

Действие жидкости и газа на погружённое в них тело. Выталкивающая (архимедова) сила. Закон Архимедов. Плавание тел. Воздухоплавание.

Демонстрации

- 1. Зависимость давления газа от температуры.
- 2. Передача давления жидкостью и газом.
- 3. Сообщающиеся сосуды.
- 4. Гидравлический пресс.
- 5. Проявление действия атмосферного давления.
- 6. Зависимость выталкивающей силы от объёма погружённой части тела и плотности жидкости.
 - 7. Равенство выталкивающей силы весу вытесненной жидкости.
- 8. Условие плавания тел: плавание или погружение тел в зависимости от соотношения плотностей тела и жидкости.

Фронтальные лабораторные работы и опыты

- 1. Исследование зависимости веса тела в воде от объёма погружённой в жидкость части тела.
- 2. Определение выталкивающей силы, действующей на тело, погружённое в жидкость.
- 3. Проверка независимости выталкивающей силы, действующей на тело в жидкости, от массы тела.
- 4. Опыты, демонстрирующие зависимость выталкивающей силы, действующей на тело в жидкости, от объёма погружённой в жидкость части тела и от плотности жидкости.
- 5. Конструирование ареометра или конструирование лодкии определение её грузоподъёмности.

Раздел 5. Работа и мощность. Энергия

Механическая работа. Мощность.

Простые механизмы: рычаг, блок, наклонная плоскость. *Правило равновесия рычага. Применение правила равновесия рычага к блоку. «Золотое правило» механики.* КПД простых механизмов. Простые механизмы в быту и технике.

Механическая энергия. *Кинетическая и потенциальная энергия. Превращение одного вида механической энергии в другой.* Закон сохранения энергии в механике.

Демонстрации

1. Примеры простых механизмов.

Фронтальные лабораторные³ работы и опыты

- 1. Определение работы силы трения при равномерном движении тела по горизонтальной поверхности.
 - 2. Исследование условий равновесия рычага.
- 3. Измерение КПД наклонной плоскости *(электронная демонстрация)*.
- 4. Изучение закона сохранения механической энергии (электронная демонстрация).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тематическое планирование и количество часов, отводимых на освоение каждой темы учебного предмета «Физика» Примерной адаптированной основной образовательной программы основного общего образования обучающихся с задержкой психического развития, в целом совпадают с соответствующим разделом Примерной рабочей программы учебного предмета «Физика» образовательной программы основного общего образования.

7 КЛАСС (68 ч)

Тематический блок, тема	Основное содержание	Основные виды деятельности учащихся (на уровне учебных действий)
Раздел 1. Физика и её роль в познании окружающего мира (6 ч)		
Физика — наука о природе (2 ч)	Физика — наука о природе. Явления природы (МС ⁵). Физические явления: механические, тепловые, электрические, магнитные, световые, звуковые.	Выявление основных различий при помощи педагога между физическими и химическими превращениями (МС — химия). Распознавание и классификация после обсуждения с педагогом при помощи наводящих вопросов физических явлений: механических, тепловых, электрических, магнитныхи световых. Наблюдение и описание физических явлений на базовом уровне.
Физические величины (2 ч)	Физические величины. Измерение физических величин.	Определение при помощи педагога цены деления шкалы измерительного прибора. Измерение по образцу под руководством педагога линейных размеров тел и промежутков

⁵ MC — элементы содержания, включающие межпредметные связи, которые подробнее раскрыты в тематическом планировании.

⁶ Курсивом обозначен учебный материал, который изучается, но не выносится на промежуточную и итоговую аттестацию.

	Погрешность измерений. Международная система единиц. Демонстрации 1. Механические, тепловые, электрические, магнитные, световые явления. 2. Физические приборы и процедура прямых измерений аналоговым и цифровым прибором. Фронтальные лабораторные работы или электронная демонстрация. 1. Определение цены деления измерительного прибора (используя технологическую карту эксперимента). 2. Измерение объёма жидкости и твёрдого тела. 3. Определение размеров малых тел.	времени с учётом погрешностей. Измерение по образцу под руководством педагога объёма жидкости и твёрдого тела. Измерение по образцу под руководством педагога температуры при помощи жидкостного термометра и датчика температуры. Выполнение несложных творческих заданий с опорой на алгоритм, предварительно разобранный с педагогом по поиску способов измерения некоторых физических характеристик, например, размеров малых объектов (волос, проволока), удалённых объектов, больших расстояний, малых промежутков времени. Обсуждение предлагаемых способов.	
Естественно- научный метод познания (2 ч)	Как физика и другие естественные науки изучают природу. Естественно-научный метод познания: наблюдение, постановка научного вопроса, выдвижение гипотез, эксперимент по проверке гипотез, объяснение наблюдаемого явления. Описание физических явлений с помощью моделей. Предмет и методы физики. Демонстрации 1. Определение погрешности эксперимента.	Выдвижение гипотез после предварительного обсуждения с педагогом, объясняющих простые явления, например: — почему останавливается движущееся по горизонтальной поверхности тело; — почему в жаркую погоду в светлой одежде прохладней, чем в тёмной. Выбор способов проверки гипотез из предложенных педагогом. Наблюдение предложенных педагогом исследований по проверке какой-либо гипотезы, например: дальность полёта шарика, пущенного горизонтально, тем больше, чем больше высота пуска. Построение совместно с педагогом простейших моделей физических явлений (в виде рисунков или схем), например падение предмета; прямолинейное распространение света.	
	Раздел 2. Первоначальные сведения о строении вещества (5 ч)		
Строение вещества (1 ч)	Строение вещества: атомы и молекулы, их размеры. Опыты, доказывающие дискретное строение вещества. Фронтальные лабораторные работы и	Наблюдение и интерпретация совместно с педагогом опытов, свидетельствующих об атомномолекулярном строении вещества: опыты с растворением различных веществ в воде. Оценка при помощи технологической карты размеров атомов и молекул с использованием фотографий, полученных на атомном силовом микроскопе (АСМ). Определение после предварительного обсуждения с педагогом размеров малых тел.	

⁷ Все Демонстрации и Лабораторные работы, представленные в содержании, допускается(можно) проводить, используя информационные и электронные технологии (цифровые образовательные ресурсы).

Движение и взаимодейств ие частиц вещества (2 ч)	опыты ⁸ . 1. Оценка диаметра атома методом рядов (с использованием фотографий). Движение частиц вещества. Связь скорости движения частиц с температурой. Броуновское движение, диффузия. Взаимодействие частиц вещества: притяжение и отталкивание. Демонстрации 1. Наблюдение броуновского движения. Фронтальные лабораторные работы и опыты 1. Опыты по наблюдению теплового расширения газов. 2. Опыты по обнаружению действия сил молекулярного притяжения.	Наблюдение и объяснение при помощи педагога броуновского движения и явления диффузии. Проведение и объяснение с опорой на алгоритм, предварительно разобранный с педагогом опытов по наблюдению теплового расширения газов. Проведение и объяснение опытов с опорой на алгоритм, предварительно разобранный с педагогом по обнаружению сил молекулярного притяжения и отталкивания.	
Агрегатные состояния вещества (2 ч)	Агрегатные состояния вещества: строение газов, жидкостей и твёрдых (кристаллических) тел. Взаимосвязь между свойствами веществ в разных агрегатных состояниях и их атомно-молекулярным строением. Особенности агрегатных состояний воды. Демонстрации 1. Наблюдение диффузии.	Описание под руководством педагога (с использованием простых моделей) основных различий в строении газов, жидкостей и твёрдых тел. Начальные представления о малой сжимаемости жидкостей и твёрдых тел, большой сжимаемости газов. Объяснение на базовом уровне под контролем педагога о сохранении формы твёрдых тел и текучести жидкости. Наблюдение за опытами, доказывающими, что в твёрдом состоянии воды частицы находятся в среднем дальше друг от друга (плотность меньше), чем в жидком. Установление с опорой на дидактический материал простых взаимосвязей между особенностями агрегатных состояний воды и существованием водных организмов (МС — биология, география).	
	Раздел 3. Движение и взаимодействие тел (21 ч)		
Механическое движение (3 ч)	Механическое движение. Равномерное и неравномерное движение. Скорость. Средняя скорость при неравномерном движении. Расчёт пути и времени движения. Демонстрации 1. Наблюдение механического движения	Исследование равномерного движения и определение его признаков после предварительного обсуждения с педагогом. Наблюдение неравномерного движения и определение его отличий от равномерного движения после предварительного обсуждения с педагогом. Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на определение пути, скорости и времени равномерного	

8 Здесь и далее приводится расширенный перечень лабораторных работ и опытов, из которого учитель делает выбор по своему усмотрению и с учётом списка экспериментальных заданий, предлагаемых в рамках ОГЭ по физике.

	тела. 2. Измерение скорости прямолинейного движения. Фронтальные лабораторные работы и опыты 1. Определение скорости равномерного движения (шарика в жидкости, модели электрического автомобиля и т. п.). 2. Определение средней скорости скольжения бруска или шарика по наклонной плоскости.	движения. Анализ при помощи педагога графиков зависимости пути и скорости от времени.
Инерция, масса, плотность (4 ч)	Явление инерции. Закон инерции. Взаимодействие тел как причина изменения скорости движения тел. Масса как мера инертности тела. Плотность вещества. Связь плотности с количеством молекул в единице объёма вещества. Демонстрации 1. Наблюдение явления инерции. 2. Наблюдение изменения скорости при взаимодействии тел. 3. Сравнение масс по взаимодействию тел.	Объяснение при помощи технологической карты и педагога и прогнозирование явлений, обусловленных инерцией, например: что происходит при торможении или резком маневре автомобиля, почему невозможно мгновенно прекратить движение на велосипеде или самокате и т. д. Наблюдение и базовый анализ опытов под руководством педагога, демонстрирующих изменение скорости движения тела в результате действия на него других тел. Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на определение массы тела, его объёма и плотности. Наблюдение и базовый анализ опытов под руководством педагога, демонстрирующих зависимость изменения скорости тела от его массы при взаимодействии тел. Измерение массы тела различными способами. Определение совместно с педагогом плотности тела в результате измерения его массы и объёма.

Сила. Виды сил (14 ч)

Сипа характеристика как взаимодействия тел. Сила упругости и закон Гука. Измерение силы с помошью динамометра. Явление тяготения и сила тяжести. Сила тяжести на других планетах (МС). Вес тела. Невесомость. Сложение сил. направленных олной прямой. Равнодействующая сил. Сила трения. Трение скольжения и трение покоя. Трение в природе и технике (МС).

Демонстрации²

- Сложение сил, направленных по одной прямой.
- 2. Демонстрация силы упругости на различных материалах.

Фронтальные лабораторные работы и опыты.

- 1. Определение плотности твёрдого тела.
- 2. Опыты, демонстрирующие зависимость растяжения (деформации) пружины от приложенной силы.
- 3. Опыты, демонстрирующие зависимость силы трения скольжения от веса тела и характера соприкасающихся поверхностей.

Изучение совместно с педагогом взаимодействия как причины изменения скорости тела или его леформации.

Описание на начальном уровне реальных ситуаций взаимодействия тел с помощью моделей, в которых вводится понятие и изображение силы.

Изучение под руководством педагога силы упругости, зависимости силы упругости от удлинения резинового шнура или пружины (с построением графика).

Анализ с опорой на дидактический материал под контролем педагога практических ситуаций, в которых проявляется действие силы упругости (упругость мяча, кроссовок, веток дерева и др.).

Анализ с опорой на дидактический материал под контролем педагога ситуаций, связанных с явлением тяготения.

Понимание с опорой на схемы при помощи педагога орбитального движения планет с использованием явления тяготения и закона инерции (МС — астрономия).

Измерение веса тела с помощью динамометра. Обоснование этого способа измерения после повторения с педагогом.

Наблюдение явления невесомости.

Наблюдение за экспериментальным получением правила сложения сил, направленных вдоль одной прямой. Определение при помощи педагога величины равнодействующей сил.

Изучение под руководством педагога силы трения скольжения и силы трения покоя.

Исследование с опорой на технологическую карту зависимости силы трения от веса тела и свойств трущихся поверхностей.

Базовый анализ с опорой на дидактический материал под контролем педагога практических ситуаций, в которых проявляется действие силы трения, используются способы её уменьшения или увеличения (катание на лыжах, коньках, торможение автомобиля, использование подшипников, плавание водных животных и др.) (МС — биология).

Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом с использованием формул для расчёта силы тяжести, силы упругости, силы трения.

Раздел 4. Давление твёрдых тел, жидкостей и газов (21 ч)

Давление. Передача давления твёрдыми телами, жидкостями и газами (3 ч)

Давление. Способы уменьшения и увеличения давления. Давление газа. Зависимость давления газа от объёма, температуры. Передача давления твёрдыми телами, жидкостями и газами. Закон Паскаля. Пневматические машины.

Демонстрации²

1. Зависимость давления газа о температуры. Анализ и объяснение с опорой на дидактический материал под контролем педагога опытов и практических ситуаций, в которых проявляется сила давления.

Обоснование с опорой на технологическую карту при помощи педагога способов уменьшения и увеличения давления.

Изучение под руководством педагога зависимости давления газа от объёма и температуры.

Изучение под руководством педагога особенностей передачи давления твёрдыми телами, жидкостями и газами. Обоснование результатов опытов особенностями строения вещества в твёрдом, жидком и газообразном состояниях предложенными формулировками.

Наблюдение за экспериментальным доказательством закона Паскаля.

	2. Передача давления жидкостью и газом.	Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на расчёт давления твёрдого тела.
Давление жидкости (5 ч)	Зависимость давления жидкости от глубины. Гидростатический парадокс. Сообщающиеся сосуды. Гидравлические механизмы. Демонстрации ² 1. Сообщающиеся сосуды. 2. Гидравлический пресс.	Исследование с опорой на технологическую карту под руководством педагога зависимости давления жидкости от глубины погружения и плотности жидкости. Наблюдение и начальное понимание гидростатического парадокса на основе закона Паскаля. Изучение совместно с педагогом сообщающихся сосудов. Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на расчёт давления жидкости. Наблюдение за объяснением принципа действия гидравлического пресса. Анализ и объяснение с опорой на дидактический материал под контролем педагога практических ситуаций, демонстрирующих проявление давления жидкости и закона Паскаля, например процессов в организме при глубоководном нырянии (МС — биология).
Атмосферное давление (6 ч)	Атмосфера Земли и атмосферное давление. Причины существования воздушной оболочки Земли. Опыт Торричелли. Измерение атмосферного давления. Зависимость атмосферного давления от высоты над уровнем моря. Приборы для измерения атмосферного давления. Демонстрации ² 1. Проявление действия атмосферного давления.	Наблюдение за экспериментальным обнаружением атмосферного давления. Анализ и объяснение с опорой на дидактический материал под контролем педагога опытов и практических ситуаций, связанных с действием атмосферного давления. Наблюдение за объяснением существования атмосферы на Земле и некоторых планетах или её отсутствия на других планетах и Луне (МС — география, астрономия). Базовое понимание причин изменения плотности атмосферы с высотой и зависимости атмосферного давления от высоты. Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на расчёт атмосферного давления. Изучение под руководством педагога устройства барометра-анероида.

на по	гвие ости и газа огружённое тело (7 ч)

Действие жидкости и газа на погружённое в них тело. Выталкивающая (архимедова) сила. Закон Архимеда. Плавание тел. Воздухоплавание.

Демонстрации²

- 1. Зависимость выталкивающей силы от объёма погружённой части тела и плотности жилкости.
- 2. Равенство выталкивающей силы весу вытесненной жилкости.
- 3. Условие плавания тел: плавание или погружение тел в зависимости от соотношения плотностей тела и жидкости.

Фронтальные лабораторные работы и опыты.

- Исследование зависимости веса тела в воде от объёма погружённой в жидкость части тела.
- Определение выталкивающей силы, действующей на тело, погружённое в жидкость.
- 3. Проверка независимости выталкивающей силы, действующей на тело в жидкости, от массы тела.
- Опыты, демонстрирующие зависимость выталкивающей силы, действующей на тело в жидкости, от объёма погружённой в жидкость части тела и от плотности жилкости.
- Конструирование ареометра или конструирование лодки и определение её грузоподъёмности.

Наблюдение за экспериментальным обнаружением действия жидкости и газа на погружённое в них тело.

Определение с опорой на технологическую карту выталкивающей силы, действующей на тело, погружённое в жидкость.

Наблюдение за проведением и обсуждение совместно с педагогом опытов, демонстрирующих зависимость выталкивающей силы, действующей на тело в жидкости, от объёма погружённой в жидкость части тела и от плотности жидкости.

Исследование под руководством педагога зависимости веса тела в воде от объёма погружённой в жилкость части тела.

Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на применение закона Архимеда и условия плавания тел. Конструирование при помощи педагога ареометра или конструирование лодки и определение её грузоподъёмности.

Раздел 5. Работа и мощность. Энергия (12 ч)

Работа и мощность (3 ч)

Механическая работа. Мощность

Наблюдение за экспериментальным определением механической работы силы тяжести при падении тела и силы трения при равномерном перемещении тела по горизонтальной поверхности.

Наблюдение за демонстрацией расчёта мощности, развиваемой при подъёме по лестнице.

Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно

		разобранный совместно с педагогом на расчёт механической работы и мощности.
Простые механизмы (5 ч)	Простые механизмы: рычаг, блок, наклонная плоскость. Правило равновесия рычага. Применение правила равновесия рычага к блоку. «Золотое правило» механики. КПД простых механизмов. Простые механизмы в быту и технике. Демонстрации 1. Примеры простых механизмов. Фронтальные лабораторные работы и опыты 1. Определение работы силы трения при равномерном движении тела по горизонтальной поверхности. 2. Исследование условий равновесия рычага. 3. Измерение КПД наклонной плоскости (электронная демонстрация).	Начальное понимание выигрыша в силе простых механизмов на примере рычага, подвижного и неподвижного блоков, наклонной плоскости. Исследование совместно с педагогом условия равновесия рычага. Обнаружение под руководством педагога с опорой на дидактический материал свойств простых механизмов в различных инструментах и приспособлениях, используемых в быту и технике, а также в живых организмах (МС — биология). Наблюдение за экспериментальным доказательством равенства работ при применении простых механизмов. Определение под руководством педагога КПД наклонной плоскости. Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом на применение правила равновесия рычага и на расчёт КПД.
Механическая энергия (4 ч)	Механическая энергия. Кинетическая и потенциальная энергия. Превращение одного вида механической энергии в другой. Закон сохранения энергии в механике. Фронтальные лабораторные работы и опыты. 1. Изучение закона сохранения механической энергии (электронная демонстрация).	Наблюдение за экспериментальным определением изменения кинетической и потенциальной энергии тела при его скатывании по наклонной плоскости. Формулирование совместно с педагогом на основе исследования закона сохранения механической энергии. Представление при помощи педагога границ применимости закона сохранения энергии. Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с педагогом с использованием закона сохранения энергии.
Резервное время (3 ч)		

8. Описание материально-технического обеспечения образовательной деятельности

- 1. Перышкин А.В. «Физика 8»: учебник для общеобразовательных учреждений. 5-ое издание. Москва. Дрофа, 2018 г.
- 2. Лукашик В.И., Иванова Е.В. Сборник задач для 7 9 классов. М.: Просвещение,
- 3. Марон А.Е. Физика: дидактические материалы для 8 класса. М.: Дрофа, 2018 г.
- 4. Кирик Л.А. Самостоятельные и контрольные работы. М.: Илекса, 2018 г.
- 5. Марон А.Е., Марон Е.А. Контрольные тесты по физике. –М.; Просвещение, 2018 г.
- 6. Библиотека электронных наглядных пособий «Физика 7 11». Кирилл и Мефодий 2018 г. 14
- 7. Физика 1С (Библиотека наглядных пособий).
- 8. Открытая физика (Часть 1) Учебное электронное издание.
- 9. Электронная энциклопедия «От плуга до лазера».
- 10. Демонстрационный учебный эксперимент CDROM/ Прграммно-аппаратный комплекс AFS. 11. Сайт http://fipi. ru 12. Сайт http:// ru. wikipedia. org Книгопечатная продукция: учебники, справочные пособия (физические энциклопедии, справочники по физике и технике), задачники по физике, КИМы по отдельным темам и курсам. Печатные и электронные пособия: таблицы, схемы, портреты ученых физиков и астрономов, комплекты интерактивных наглядных пособий по всем темам курса физики средней школы. Технические средства обучения: интерактивный комплекс кабинета физики (ноутбук учителя, ноутбуки учащихся с доступом к ресурсам Интернет, интерактивная доска, планшет, мультимедийный проектор, документ-камера, колонки). Лабораторное и демонстрационное оборудование по всем темам курса физики средней школ